1.4 Properties of Biological Macromolecules

SYI-1.B Describe the properties of the monomers and the type of bonds that connect the monomers in biological macromolecules.

- Structure and function of polymers are derived from the way their monomers are assembled.

Nucleic Acids

- Biological information is encoded in sequences of Nucleotide Monomers.
 - Pentose sugar (deoxyribose or ribose)
 - Phosphate group
 - Nitrogenous base
 1. Pyrimidines: cytosine, thymine, uracil (RNA)
 2. Purines: adenine, guanine
- Covalent bonds are Phosphodiester linkages

Proteins

- Form muscle, skin, and enzymes
- Monomers are Amino Acids (20)
 - Amino acids have directionality, with an amino (NH2) terminus and a carboxyl (COOH) terminus.
 - H atom
 - Variable group (R)
 1. Can be categorized by chemical properties (hydrophobic, hydrophilic and ionic)
 2. Interactions of R groups determine structure and function of that region of the protein.
Proteins
- Covalent bond is a peptide bond (dehydration synthesis)
- 4 or more amino acids is a polypeptide
- The specific order of amino acids in a polypeptide (primary structure) determines the overall shape of the protein

Carbohydrates
- Sugar monomers whose structures and bonding with each other by dehydration synthesis determine the properties and functions of the molecules
- Monosaccharides
 - CH₂O formula
 - Simple single sugars
 - Used for cellular respiration
 - Aldoses and Ketoses

Carbohydrates
- Glucose
 - Made by plants during photosynthesis
 - Main source of energy for plants and animals
 - Metabolized during cellular respiration.
 - Ring structure in water
- Fructose
 - Found in fruit.
 - Sweetest sugar.
- Galactose
 - Found in milk.
- Deoxyribose
 - Ribose

Carbohydrates
- Disaccharides
 - Covalent bond is Glycosidic bond
 - Sucrose
 - Fructose + Glucose
 - table sugar
 - from beets and cane
 - Lactose
 - Glucose + Galactose
 - found in milk
 - Maltose
 - Glucose + Glucose
 - Fermented barley

Carbohydrates
- Polysaccharides
 - Three or more monosaccharides
 - Storage:
 - Glycogen- The way animals store glucose.
 - Starch- The way plants store glucose.
 - Structural:
 - Cellulose- most abundant organic compound, cell walls of plants
 - Chitin- exoskeletons; cell walls of fungi; surgical thread

Lipids
- In general, lipids are nonpolar (don’t dissolve in water)
- Fats, oils, waxes, phospholipids, steroids.
- Differences in saturation determine the structure and function of lipids.
Fatty Acids
- The monomer that makes most lipids
- One end contains a hydrophilic carboxyl (COOH)
- Non-polar C-H bonds in fatty acid ‘tails’ (hydrophobic)
- Covalent bond is an ester bond (3 fatty acids to 1 glycerol)

Phospholipids
- 2 fatty acids tails and one phosphate group head
 - ‘Tails’ hydrophobic
 - ‘heads’ hydrophilic
- Can spontaneously form
 - Micelle
 - Liposome
 - Bilayer (cell membranes)

Waxes
- Long fatty acid connected to long alcohol
- Long fatty acid = hydrophobic
- Protective barriers in plants and animals.

Fatty Acids
- Saturated: only single bonds
- Unsaturated: some double bonds
 - mono or poly
 - Cis isomer (natural form, oils)
 - Trans isomer (some natural, most by hydrogenation)

Steroids
- Lipids with 4 fused carbon rings
- Not fatty acids.
- Four carbon ring that does not dissolve in water.
- Found in hormones, nerve tissue, toad venoms, plant poisons.
- Cholesterol
 - Cell membranes
 - Precursor for other steroids